Protocols for studying dynamic systems

AGENT-BASED MODELING IN SOCIOECOLOGICAL RESEARCH

Michael Barton
School of Human Evolution & Social Change
Center for Social Dynamics & Complexity
Observational Social Science

- Social science inherently observational
- Can only observe societies ‘in the wild’
Observational Social Science

- Cannot carry out controlled social “experiments” due to ethics, pragmatic issues

...and questions of good taste
Social Systems are Complex

- Even simple social systems are complex
- Amplified by
 - interactions of social and geophysical phenomena,
 - change over space,
 - change over time
- Consequences include...
 - Non-linear relationships between “cause” and “effect” (e.g., threshold and scale-dependent effects)
 - Emergent (often unexpected) properties of organization and process
Social Systems are Complex

- Human intuition often insufficient for making sense of data from complex socioecological systems
- We are accustomed to thinking in linear cause and effect
- Sheer quantity of interactions, feedbacks, and dynamics more than unaided minds can comprehend reliably
Social Systems are Complex

- Most common mathematical models inadequate to deal with this level of complexity
- Many treat social systems like chemical systems
- Most inferential statistics deal with static relationships
- Even dynamic systems models aggregate over space
Consequences for Social Sciences

- Emphasis of inductive over deductive research
- Intuitive interpretations of complex phenomena that appeal to ‘common sense’
- Empirical generalizations substitute for explanation— as if society operated like chemical reactions; lack of history
- *Post hoc* accounts predominate over predictive explanation of process
- Lack of replicability, and common sense interpretations make evaluation of results difficult
- Inability to characterize societies and their dynamics in *other* than narrative form
- Math restricted to supporting narrative; quantitative expressions of social phenomena often trivial
Consequences for Social Science

- External (and internal) perceptions of social science
 - Little confidence in reliability of explanations of social phenomena and especially of change
 - Ironically considered a “soft science” because of the difficulty of systematic study of its subject matter
- Limited contribution to policy
A Science of Social Dynamics

- A new kind of social science is needed
- Theory and concepts
 - Focus on social dynamics
 - Reconceptualize sociality and societies as complex systems
- Research protocols
 - Represent social organization, interaction, and change as explicit, algorithmic models
 - Add emerging cybertools to traditional research protocols of observational data collection and confirmatory statistics
 - Greater use of “Computational thinking”
 - New dimensions and added value for existing approaches and data
A Science of Social Dynamics

- New cybertools allow us to explicitly and quantitatively represent complex human systems and their rich variation across space and time.
- Important examples include:
 - GIS and geospatial models
 - Agent based models
 - New forms of interactive visualization of multivariate data
- Provide opportunity to develop a new science of social dynamics.
A Science of Social Dynamics

- Express complex interactions and dynamics in quantitative form that can be better communicated and independently evaluated.
- Transparently test ideas about process and change in social systems.
- Develop more explicit and testable hypotheses about social dynamics.
- Create an experimental social science where modeling permits controlled replication of social processes. ‘Re-run the social tape’ (sensu R. Gould).
A Science of Social Dynamics

- Encourage robust hypothesis testing and verification—and explanations that are predictive (i.e., “forecasts”)
- Except for economics, social science leery of forecasting or even rejects it
- Required, at some level, for policy input
- Forecasting of complex phenomena is possible (e.g., weather and hurricanes)
- Focus on estimates of likely and unlikely outcomes under given scenarios
Examples of Research Protocols for a Science of Social Dynamics

- Mediterranean Landscape Dynamics project
 - Large-scale research, spanning Mediterranean
 - Supported by NSF Biocomplexity program (BCS-0410269)
 - More details tomorrow

- Mogollon Rim Small Sites project
 - Small-scale research in Apache-Sitgreaves National Forests
 - Supported by US Forest Service
 - Will build on this example for hands-on sessions Friday
Mediterranean Landscape Dynamics

- A modeling laboratory for studying socioecological system dynamics
- Bottom-up complex systems approach to study the large-scale landscape consequences of small-scale land use decisions, and their feedbacks
- Interdisciplinary collaboration
 - Archaeology, geosciences, life sciences, climatology, computer science, geospatial methods and statistics
Mediterranean Landscape Dynamics

- Spans Mediterranean socioecosystems
 - Arid East
 - Moister West
 - Range of social configurations
MedLand Modeling Laboratory

- Agent-based simulation of human landuse: beginning of farming to beginning of urbanism
- Surface process models of ancient landscape and climate within a GIS framework
- Linked in a hybrid, coupled model environment so that change in one module can affect state variables that serve as input to another
- Test and refine against rich archaeological and paleoecological record of Mediterranean basin
MedLand Modeling Laboratory

- 3 interlinked modeling environments
 - Potential landscape model
 - Reference landscape chronosequence
 - Agropastoral socioecology model
Hybrid ABM & Landscape Model

- Household is basic unit (agent)
- Landuse decisions \(\text{GIS} \rightarrow \text{ABM}\)
 - Potential productivity
 - Distance from village
 - Labor investment needed (e.g., clear land or simply cultivate)
- Landuse activities \(\text{ABM} \rightarrow \text{GIS}\)
 - Clearing land
 - Cultivating crops
 - Fallowing
 - Harvesting crops
 - Gathering wood
- Returns \(\text{GIS} \rightarrow \text{ABM}\)
Hybrid ABM & Landscape Model

- Landscape modeling environment
 - Built in GRASS
 - Open source GIS, analysis, and modeling environment
 - Raster (cellular) landscape
- Surface processes modeled with unit stream power erosion/deposition model (USPED)
- PDE in ± cellular autonoma environment
Experiments in Socioecological Dynamics: Spain

Neolithic farming in the Penaguila Valley, central Mediterranean Spain
Experiments in Socioecological Dynamics: Spain

ABM land cover/landuse

GIS landscape (erosion/deposition)

200 year coupled landuse-landscape simulation
Experiments in Socioecological Dynamics: Jordan

Modeled Wadi Ziqlab. 200 yrs shifting cultivation & grazing

Wadi Ziqlab today

Tell Rakkan: channel incision (shifting cultivation, grazing, low rainfall)
Mogollon Rim Small Sites

Project location
Mogollon Rim Small Sites

- Patch-based survey
- Pre-ceramic settlement clustered near canyons
Mogollon Rim Small Sites

- Socioeconomic change with agricultural subsistence
- Evenly distributed sites in inter-canyon uplands
Testing Models of Dynamics

- Shifting cultivation in vulnerable landscape
- Serial movement of farmsteads
- Constrained by zones of exhausted soil caused by prior cultivation
- Resulting pattern of evenly spaced sites

Testing Models of Dynamics

- Simple model of shifting cultivation in NetLogo
- Can serial abandonment and movement, constrained by soil fertility create evenly distributed archaeological sites?
Testing Models of Dynamics

- Brief demonstration
Modeling Not Just for ‘Big Science’

- Can help to develop testable hypotheses
- Can test conceptual models about dynamics
- Potential for applicability at many scales
- BUT requires…
 - “Computational thinking” about social dynamics (models vs. simulations)
 - Familiarity with computer-based tools
 - Investment of time for ‘intellectual retooling’
 - Investment of institutional human resources
New Uses for Extant Data

- Enormous and rich corpus of social science data—and more being created annually

- Modeling offers a new way to use these data
 - Not as the basis of empirical generalizations that rely on uniformitarian assumptions about human behavior
 - But as the means to parameterize and validate dynamic models of human society
New Uses for Extant Data

- Add experimental component largely lacking in social science
 - Conduct experiments about scenarios that did and did not happen—or scenarios that have not yet happened
 - Compare with known outcomes.
 - Examine long-term consequences of decisions
 - Apply to decisions and policy.

- Improve theory
 - Test theoretical propositions about dynamics.
 - Study linkages between individual/small-scale and group/large-scale phenomena
Tools for Science of Social Dynamics

- Modeling software is rapidly changing
 - Better response to needs of domain specialists rather than computer specialists
 - Improvements to interfaces and installation
 - Access to external data and programs

- Examples
 - NetLogo 4 http://ccl.northwestern.edu/netlogo/
 - Repast Symphony http://repast.sourceforge.net/
 - Metascape http://www.metascapeabm.com/
Tools for Science of Social Dynamics

- Social scientists need to be involved with the development of these important tools for our research (e.g., geography and archaeology with GIS).
- Need to train our students (and ourselves) in the use of new research methods.
- Need to jumpstart a science of social dynamics through sharing information and expertise in forums like this one.
Infrastructural Challenges

- Existing venues for information dissemination and scientific scaffolding not well suited for complex system modeling
- Lack of training in relevant concepts and methods in social science
- Underdeveloped reward structure for social dynamics science
- Young technology that is rapidly changing
- Articulation with existing approaches in social and natural sciences
Open Agent Based Modeling Consortium

- Community of researchers in social and ecological sciences
- Improving access to computational tools for complex systems modeling
- Sharing experiences and strategies
- Promoting a science of social dynamics
- Get involved: http://www.openabm.org